Quantum criticality in a paradigm luttinger liquid:
T-dependent ARPES of the Quasi-1D metal Li_{0.9}Mo_{6}O_{17}

Feng Wang1, S.-K. Mo1, J. Alvarez2, J.W. Allen1, G.-H. Gweon3, J. He4, R. Jin5, D. Mandrus4,5, H. Höchst6, H.-D. Kim7, A. Sekiyama8, M. Tsunekawa8, S. Suga8
1University of Michigan, 2Universidad Autonoma de Madrid, 3Advanced Light Source, LBNL, 4University of Tennessee, 5Solid State Division, ORNL, 6SRC, University of Wisconsin, 7Pohang Accelerator Laboratory, Korea, 8Osaka University, Japan

Li_{0.9}Mo_{6}O_{17} is a quasi-one-dimensional metal having highly anisotropic electronic properties [1]. Previous studies of this material by angle-resolved photoemission spectroscopy (ARPES) [2-4] have shown various signatures of the Luttinger liquid (LL) model [5], including a power-law like density of state (DOS) near Fermi energy E_F. The power-law DOS has also been observed in scanning tunneling spectroscopy, however with a different anomalous exponent α value [6].

I am going to present our most recently work, where we carefully studied the temperature dependence of Li_{0.9}Mo_{6}O_{17} over a wide T range of 15-300 K using ARPES. We have found that α shows a strong T-dependent renormalization such that the values found in tunneling and previous ARPES are quantitatively consistent, and that this renormalization is the result of marginal interactions among charge neutral modes present explicitly because of the two-band nature of Li_{0.9}Mo_{6}O_{17} [7]. The angle resolved spectra are also analyzed and show T scaling over a wide T range. To understand the slight deviation from perfect T scaling at low T, we compare experiment data to simulations with consideration of finite resolutions. Since low energy ARPES is generally a surface sensitive technique, we compared our results from SRC using low photon energy to those from Spring-8 using high photon energy, which confirms the LL behaviors we have measured in Li_{0.9}Mo_{6}O_{17} is of real bulk [8].

This work was supported at UM by the U.S. NSF (DMR-03-02825), at UAM by MEC under a contract RyC, at the ORNL by the U.S. DoE (DE-AC05- 00OR22725), at UT by the U.S. NSF (DMR-00-72998), at the SRC by the U.S. NSF (DMR-00-84402).

References: