Characterization of Diamond Crystal X-Ray Phase Retarder

Lonny Bermana, Qun Shenb, Ken Finkelsteinb, Park Doingb, Zhijian Yina, and Guoqiang Panc

\textit{a: National Synchrotron Light Source, Brookhaven National Laboratory, Bldg. 725D, Upton, NY 11973}

\textit{b: Cornell High Energy Synchrotron Source, Cornell University, Wilson Laboratory, Ithaca, NY 14853}

\textit{c: National Synchrotron Radiation Laboratory, University of Science and Technology of China, P.O. Box 6022, Hefei, Anhui 230029, P.R. China}

An x-ray phase retarder based on a diamond single crystal diffracting in the asymmetric Laue geometry has been characterized at the X25 wiggler beamline at the National Synchrotron Light Source (NSLS). The forward diffracted (transmitted) beam, using the (111) Bragg planes in a 0.5 mm thick wafer with an (001) surface normal, was employed. For polarization analysis, a GaAs(111) crystal was oriented for the (222) reflection and scanned through the three-beam diffraction condition. From careful analyses of the analyzer crystal's three-beam diffraction lineshapes and rocking curves, all four Stokes-Poincare polarization parameters of the beam transmitted by the diamond crystal were determined, for several settings of the diamond about its (111) rocking curve. At 7.1 keV, with the beam incident upon the diamond phase retarder essentially completely linearly polarized (horizontally), the Stokes-Poincare polarization parameter P_3 (which represents the degree of left- or right-handed circular polarization) was determined to be -0.95 and $+0.87$ at diamond crystal rocking angles of -0.02 and $+0.02$ deg relative to the rocking curve center, respectively, in good agreement with calculation and indicating excellent performance of the phase retarder as a circular polarizer (see Figure 1). The use of thin (001) oriented diamond crystal plates (which are the most readily available diamond crystals) combined with use of the transmission Laue geometry (which makes alignment relatively straightforward) facilitate the application of diamond crystals as x-ray phase retarders.

This work was supported by the US Department of Energy Office of Basic Energy Sciences through Contract No. DE-AC02-98CH10886 (NSLS) and by the US National Science Foundation Division of Materials Research through Grant No. DMR-9713424 (CHESS).

Submitting author: Lonny Berman, e-mail: berman@bnl.gov